The Denaturant- and Mutation-Induced Disassembly of Pseudomonas aeruginosa Hexameric Hfq Y55W Mutant
Although oligomeric proteins are predominant in cells, their folding is poorly studied at present. This work is focused on the denaturant- and mutation-induced disassembly of the hexameric mutant Y55W of the Qβ host factor (Hfq) from mesophilic Pseudomonas aeruginosa (Pae). Using intrinsic tryptopha...
Gespeichert in:
Veröffentlicht in: | Molecules (Basel, Switzerland) Switzerland), 2022-06, Vol.27 (12), p.3821 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Although oligomeric proteins are predominant in cells, their folding is poorly studied at present. This work is focused on the denaturant- and mutation-induced disassembly of the hexameric mutant Y55W of the Qβ host factor (Hfq) from mesophilic Pseudomonas aeruginosa (Pae). Using intrinsic tryptophan fluorescence, dynamic light scattering (DLS), and high-performance liquid chromatography (HPLC), we show that the dissociation of Hfq Y55W occurs either under the effect of GuHCl or during the pre-denaturing transition, when the protein concentration is decreased, with both events proceeding through the accumulation of stable intermediate states. With an extremely low pH of 1.4, a low ionic strength, and decreasing protein concentration, the accumulated trimers and dimers turn into monomers. Also, we report on the structural features of monomeric Hfq resulting from a triple mutation (D9A/V43R/Y55W) within the inter-subunit surface of the protein. This globular and rigidly packed monomer displays a high thermostability and an oligomer-like content of the secondary structure, although its urea resistance is much lower. |
---|---|
ISSN: | 1420-3049 1420-3049 |
DOI: | 10.3390/molecules27123821 |