Rootstock mediates transcriptional regulation of citrulline metabolism in grafted watermelon

Citrulline is a non-essential amino acid, involved in key biological functions in plants and humans. Rootstocks have a major impact on citrulline accumulation in grafted watermelon. Information regarding rootstock induced changes in citrulline metabolism is elusive. To understand the regulatory mech...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brazilian journal of biology 2021-02, Vol.81 (1), p.125-136
Hauptverfasser: Aslam, A, Shengjie, Z, Xuqiang, L, Nan, H, Wenge, L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Citrulline is a non-essential amino acid, involved in key biological functions in plants and humans. Rootstocks have a major impact on citrulline accumulation in grafted watermelon. Information regarding rootstock induced changes in citrulline metabolism is elusive. To understand the regulatory mechanism, parallel changes in the expression profiles of citrulline metabolic genes and citrulline content of watermelon were monitored during the development of self-rooted watermelon and watermelon grafted onto pumpkin, wild and bottle gourd rootstocks. Results demonstrated that rootstocks regulated the expression profiles in different ways to influence the citrulline content. GAT, NAGPR, ASS3 ASS2 and Asl2 showed the negative correlation with citrulline content in pumpkin grafted watermelon. Pumpkin rootstock promoted the citrulline content by high down-regulation and synergistic effect of ASS2, ASS3, ASL1 and ASl2 genes. In wild grafted watermelon, citrulline was accumulated as a result of down regulation of GAT, NAGS and ASL2 genes, which showed an inverse correlation with citrulline. In gourd grafted watermelon, changes in citrulline content were observed to be linked with lower expressions of GAT, NAGK, ASS2, ASS3, ASL1 and ARG which were negatively correlated with citrulline content. Our study will provide the basis to understand the molecular mechanism of citrulline accumulation in various rootstocks.
ISSN:1519-6984
1678-4375
1678-4375
DOI:10.1590/1519-6984.223633