Schur Algebras over C-Algebras
Let be a C * -algebra with identity 1 , and let s ( ) denote the set of all states on . For p , q , r ∈ [ 1 , ∞ ) , denote by r ( ) the set of all infinite matrices A = [ a j k ] j , k = 1 ∞ over such that the matrix ( ϕ [ A [ 2 ] ] ) [ r ] : = [ ( ϕ ( a j k * a j k ) ) r ] j , k = 1 ∞ defines a bou...
Gespeichert in:
Veröffentlicht in: | International Journal of Mathematics and Mathematical Sciences 2007, Vol.2007, p.910-924 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
be a
C
*
-algebra with identity
1
, and let
s
(
)
denote the set of all states on
. For
p
,
q
,
r
∈
[
1
,
∞
)
, denote by
r
(
)
the set of all infinite matrices
A
=
[
a
j
k
]
j
,
k
=
1
∞
over
such that the matrix
(
ϕ
[
A
[
2
]
]
)
[
r
]
:
=
[
(
ϕ
(
a
j
k
*
a
j
k
)
)
r
]
j
,
k
=
1
∞
defines a bounded linear operator from
ℓ
p
to
ℓ
q
for all
ϕ
∈
s
(
)
. Then
r
(
)
is a Banach algebra with the Schur product operation and norm
‖
A
‖
=
sup
{
‖
(
ϕ
[
A
[
2
]
]
)
r
‖
1
/
(
2
r
)
:
ϕ
∈
s
(
)
}
. Analogs of Schatten's theorems on dualities among the compact operators, the trace-class operators, and all the bounded operators on a Hilbert space are proved. |
---|---|
ISSN: | 0161-1712 1687-0425 |
DOI: | 10.1155/2007/63808 |