Schur Algebras over C-Algebras

Let be a C * -algebra with identity 1 , and let s ( ) denote the set of all states on . For p , q , r ∈ [ 1 , ∞ ) , denote by r ( ) the set of all infinite matrices A = [ a j k ] j , k = 1 ∞ over such that the matrix ( ϕ [ A [ 2 ] ] ) [ r ] : = [ ( ϕ ( a j k * a j k ) ) r ] j , k = 1 ∞ defines a bou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Journal of Mathematics and Mathematical Sciences 2007, Vol.2007, p.910-924
Hauptverfasser: Chaisuriya, Pachara, Ong, Sing-Cheong, Wang, Sheng-Wang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let be a C * -algebra with identity 1 , and let s ( ) denote the set of all states on . For p , q , r ∈ [ 1 , ∞ ) , denote by r ( ) the set of all infinite matrices A = [ a j k ] j , k = 1 ∞ over such that the matrix ( ϕ [ A [ 2 ] ] ) [ r ] : = [ ( ϕ ( a j k * a j k ) ) r ] j , k = 1 ∞ defines a bounded linear operator from ℓ p to ℓ q for all ϕ ∈ s ( ) . Then r ( ) is a Banach algebra with the Schur product operation and norm ‖ A ‖ = sup { ‖ ( ϕ [ A [ 2 ] ] ) r ‖ 1 / ( 2 r ) : ϕ ∈ s ( ) } . Analogs of Schatten's theorems on dualities among the compact operators, the trace-class operators, and all the bounded operators on a Hilbert space are proved.
ISSN:0161-1712
1687-0425
DOI:10.1155/2007/63808