Uncertainty quantification of borehole heat exchanger design length based on a global sensitivity analysis

Ground heat exchangers are essential components of ground-source heat pump systems. One of the most-used ground heat exchanger types is a borehole heat exchanger (BHE). Many parameters, such as the building thermal loads, ground thermal properties, and BHE components, influence the required BHE leng...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:E3S web of conferences 2023-01, Vol.396, p.3013
Hauptverfasser: Shin, Euntak, Kim, Yoonseong, Kim, Young-sang, Choi, Wonjun
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ground heat exchangers are essential components of ground-source heat pump systems. One of the most-used ground heat exchanger types is a borehole heat exchanger (BHE). Many parameters, such as the building thermal loads, ground thermal properties, and BHE components, influence the required BHE length. Therefore, understanding how individual parameter uncertainties are propagated to the output is counterintuitive. In this study, a global sensitivity analysis (GSA) was performed using the framework of the American Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE) BHE design method. The GSA was conducted to identify the subparameters behind the input parameters of ASHRAE design method, which indirectly determine the BHE lengths by impacting the direct input parameters in the ASHRAE formula. The results reveal that the zone infiltration, heat pump efficiency, ground temperature, effective borehole thermal resistance, and electric equipment heat gain are the most influential parameters on the BHE design length.
ISSN:2267-1242
2267-1242
DOI:10.1051/e3sconf/202339603013