Road Damage Detection Using the Hunger Games Search with Elman Neural Network on High-Resolution Remote Sensing Images

Roads can be significant traffic lifelines that can be damaged by collapsed tree branches, landslide rubble, and buildings debris. Thus, road damage detection and evaluation by utilizing High-Resolution Remote Sensing Images (RSI) are highly important to maintain routes in optimal conditions and exe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Switzerland), 2022-12, Vol.14 (24), p.6222
Hauptverfasser: Al Duhayyim, Mesfer, Malibari, Areej A., Alharbi, Abdullah, Afef, Kallekh, Yafoz, Ayman, Alsini, Raed, Alghushairy, Omar, Mohsen, Heba
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Roads can be significant traffic lifelines that can be damaged by collapsed tree branches, landslide rubble, and buildings debris. Thus, road damage detection and evaluation by utilizing High-Resolution Remote Sensing Images (RSI) are highly important to maintain routes in optimal conditions and execute rescue operations. Detecting damaged road areas through high-resolution aerial images could promote faster and effectual disaster management and decision making. Several techniques for the prediction and detection of road damage caused by earthquakes are available. Recently, computer vision (CV) techniques have appeared as an optimal solution for road damage automated inspection. This article presents a new Road Damage Detection modality using the Hunger Games Search with Elman Neural Network (RDD–HGSENN) on High-Resolution RSIs. The presented RDD–HGSENN technique mainly aims to determine road damages using RSIs. In the presented RDD–HGSENN technique, the RetinaNet model was applied for damage detection on a road. In addition, the RDD–HGSENN technique can perform road damage classification using the ENN model. To tune the ENN parameters automatically, the HGS algorithm was exploited in this work. To examine the enhanced outcomes of the presented RDD–HGSENN technique, a comprehensive set of simulations were conducted. The experimental outcomes demonstrated the improved performance of the RDD–HGSENN technique with respect to recent approaches in relation to several measures.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs14246222