Fractionated carbon ion irradiations of the rat spinal cord: comparison of the relative biological effectiveness with predictions of the local effect model

To determine the relative biological effectiveness (RBE) and α/β-values after fractionated carbon ion irradiations of the rat spinal cord with varying linear energy transfer (LET) to benchmark RBE-model calculations. The rat spinal cord was irradiated with 6 fractions of carbon ions at 6 positions w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Radiation oncology (London, England) England), 2020-01, Vol.15 (1), p.6-10, Article 6
Hauptverfasser: Saager, Maria, Glowa, Christin, Peschke, Peter, Brons, Stephan, Grün, Rebecca, Scholz, Michael, Debus, Jürgen, Karger, Christian P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To determine the relative biological effectiveness (RBE) and α/β-values after fractionated carbon ion irradiations of the rat spinal cord with varying linear energy transfer (LET) to benchmark RBE-model calculations. The rat spinal cord was irradiated with 6 fractions of carbon ions at 6 positions within a 6 cm spread-out Bragg-peak (SOBP, LET: 16-99 keV/μm). TD -values (dose at 50% complication probability) were determined from dose-response curves for the endpoint radiation induced myelopathy (paresis grade II) within 300 days after irradiation. Based on TD -values of 15 MV photons, RBE-values were calculated and adding previously published data, the LET and fractional dose-dependence of the RBE was used to benchmark the local effect model (LEM I and IV). At six fractions, TD -values decreased from 39.1 ± 0.4 Gy at 16 keV/μm to 17.5 ± 0.3 Gy at 99 keV/μm and the RBE increased accordingly from 1.46 ± 0.05 to 3.26 ± 0.13. Experimental α/β-ratios ranged from 6.9 ± 1.1 Gy to 44.3 ± 7.2 Gy and increased strongly with LET. Including all available data, comparison with model-predictions revealed that (i) LEM IV agrees better in the SOBP, while LEM I fits better in the entrance region, (ii) LEM IV describes the slope of the RBE within the SOBP better than LEM I, and (iii) in contrast to the strong LET-dependence, the RBE-deviations depend only weakly on fractionation within the measured range. This study extends the available RBE data base to significantly lower fractional doses and performes detailed tests of the RBE-models LEM I and IV. In this comparison, LEM IV agrees better with the experimental data in the SOBP than LEM I. While this could support a model replacement in treatment planning, careful dosimetric analysis is required for the individual patient to evaluate potential clinical consequences.
ISSN:1748-717X
1748-717X
DOI:10.1186/s13014-019-1439-1