Comparative Transcriptome Analysis of Bt Resistant and Susceptible Strains in Ostrinia furnacalis (Guenée) (Lepidoptera: Crambidae)

The evolution of target pest population resistance to Bt toxins is the most relevant threat to the sustainability of Bt technology, thus it is necessary to clarify insect resistance mechanisms. Firstly, the resistance level of Asian corn borer was determined by bioassay. After 28 generations selecti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Agriculture (Basel) 2022-02, Vol.12 (2), p.298
Hauptverfasser: Lin, Yaling, Gao, Qing, Wang, Yueqin, Wang, Zhenying, He, Kanglai, Shang, Suqin, Zhang, Tiantao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The evolution of target pest population resistance to Bt toxins is the most relevant threat to the sustainability of Bt technology, thus it is necessary to clarify insect resistance mechanisms. Firstly, the resistance level of Asian corn borer was determined by bioassay. After 28 generations selection in the lab, the Cry1Ie-resistant strain (ACB-IeR) developed more than 862-fold resistance to Cry1Ie, and the Cry1F-resistant strain (ACB-FR) developed 961-fold resistance to Cry1F. The results show that long-term exposure to Bt toxins can lead to resistance. Then, we compared the differential expression genes (DEGs) of ACB-FR and ACB-IeR with susceptible strain (ACB-BtS), and analyzed GO function and KEGG pathway through transcriptome sequencing. The comparison showed that in Bt-resistant strains, many genes have a significant down-regulated trend. Several Bt-resistance candidate genes were differentially expressed in both resistant strains. Furthermore, the DEGs were verified by RT-qPCR and showed similar trend. These results provide candidate genes for further research on the Bt resistance mechanism.
ISSN:2077-0472
2077-0472
DOI:10.3390/agriculture12020298