Diversity and evolution of the emerging Pandoraviridae family

With DNA genomes reaching 2.5 Mb packed in particles of bacterium-like shape and dimension, the first two Acanthamoeba-infecting pandoraviruses remained up to now the most complex viruses since their discovery in 2013. Our isolation of three new strains from distant locations and environments is now...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2018-06, Vol.9 (1), p.2285-12, Article 2285
Hauptverfasser: Legendre, Matthieu, Fabre, Elisabeth, Poirot, Olivier, Jeudy, Sandra, Lartigue, Audrey, Alempic, Jean-Marie, Beucher, Laure, Philippe, Nadège, Bertaux, Lionel, Christo-Foroux, Eugène, Labadie, Karine, Couté, Yohann, Abergel, Chantal, Claverie, Jean-Michel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:With DNA genomes reaching 2.5 Mb packed in particles of bacterium-like shape and dimension, the first two Acanthamoeba-infecting pandoraviruses remained up to now the most complex viruses since their discovery in 2013. Our isolation of three new strains from distant locations and environments is now used to perform the first comparative genomics analysis of the emerging worldwide-distributed Pandoraviridae family. Thorough annotation of the genomes combining transcriptomic, proteomic, and bioinformatic analyses reveals many non-coding transcripts and significantly reduces the former set of predicted protein-coding genes. Here we show that the pandoraviruses exhibit an open pan-genome, the enormous size of which is not adequately explained by gene duplications or horizontal transfers. As most of the strain-specific genes have no extant homolog and exhibit statistical features comparable to intergenic regions, we suggest that de novo gene creation could contribute to the evolution of the giant pandoravirus genomes. Giant viruses are visible by light microscopy and have unusually long genomes. Here, the authors report three new members of the Pandoraviridae family and investigate their evolution and diversity.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-018-04698-4