Redox-Responsive Halogen Bonding as a Highly Selective Interaction for Electrochemical Separations

Leveraging specific noncovalent interactions can broaden the mechanims for selective electrochemical separations beyond solely electrostatic interactions. Here, we explore redox-responsive halogen bonding (XB) for selective electrosorption in nonaqueous media, by taking advantage of directional inte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:JACS Au 2024-07, Vol.4 (7), p.2523-2538
Hauptverfasser: Kim, Nayeong, Jeyaraj, Vijaya S., Elbert, Johannes, Seo, Sung Jin, Mironenko, Alexander V., Su, Xiao
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Leveraging specific noncovalent interactions can broaden the mechanims for selective electrochemical separations beyond solely electrostatic interactions. Here, we explore redox-responsive halogen bonding (XB) for selective electrosorption in nonaqueous media, by taking advantage of directional interactions of XB alongisde a cooperative and synergistic ferrocene redox-center. We designed and evaluated a new redox-active XB donor polymer, poly­(5-iodo-4-ferrocenyl-1-(4-vinylbenzyl)-1H-1,2,3-triazole) (P­(FcTS-I)), for the electrochemically switchable binding and release of target organic and inorganic ions at a heterogeneous interface. Under applied potential, the oxidized ferrocene amplifies the halogen binding site, leading to significantly enhanced uptake and selectivity towards key inorganic and organic species, including chloride, bisulfate, and benzenesulfonate, compared to the open-circuit potential or the hydrogen bonding donor analog. Density functional theory calculations, as well as spectroscopic analysis, offer mechanistic insight into the degree of amplification of σ-holes at a molecular level, with selectivity modulated by charge transfer and dispersion interactions. Our work highlights the potential of XB in selective electrosorption by uniquely leveraging noncovalent interactions for redox-mediated electrochemical separations.
ISSN:2691-3704
2691-3704
DOI:10.1021/jacsau.4c00265