A High-Strength Strain Sensor Based on a Reshaped Micro-Air-Cavity

We demonstrate a high-strength strain sensor based on a micro-air-cavity reshaped through repeating arc discharge. The strain sensor has a micro-scale cavity, approximate plane reflection, and large wall thickness, contributing to a broad free spectrum range ~36 nm at 1555 nm, high fringe contrast ~...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2020-08, Vol.20 (16), p.4530
Hauptverfasser: Chen, Yanping, Luo, Junxian, Liu, Shen, Zou, Mengqiang, Lu, Shengzhen, Yang, Yong, Liao, Changrui, Wang, Yiping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We demonstrate a high-strength strain sensor based on a micro-air-cavity reshaped through repeating arc discharge. The strain sensor has a micro-scale cavity, approximate plane reflection, and large wall thickness, contributing to a broad free spectrum range ~36 nm at 1555 nm, high fringe contrast ~38 dB, and super-high mechanical robustness, respectively. A sensitivity of ~2.39 pm/με and a large measurement range of 0 to 9800 με are achieved for this strain sensor. The strain sensor has a high strength, e.g., the tensile strain applied the sensor is up to 10,000 με until the tested the single-mode fiber is broken into two sections. In addition, it exhibited low thermal sensitivity of less than 1.0 pm/°C reducing the cross-sensitivity between tensile strain and temperature.
ISSN:1424-8220
1424-8220
DOI:10.3390/s20164530