Epigenetic Dynamics of the Infant Immune System Reveals a Tumor Necrosis Factor Superfamily Signature in Early Human Life
DNA methylation (DNAm) is an essential mechanism governing normal development in humans. Although most DNAm patterns in blood cells are established in utero, the genes associated with immune function undergo postnatal DNAm modifications, and the characterization of this subset of genes is incomplete...
Gespeichert in:
Veröffentlicht in: | Epigenomes 2020-09, Vol.4 (3), p.12 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | DNA methylation (DNAm) is an essential mechanism governing normal development in humans. Although most DNAm patterns in blood cells are established in utero, the genes associated with immune function undergo postnatal DNAm modifications, and the characterization of this subset of genes is incomplete. Accordingly, we used available longitudinal DNAm datasets from a large birth cohort in the U.S. to further identify postnatal DNAm variation in peripheral leukocytes from 105 children (n = 105) between birth and the first two years of life, as determined by postnatal changes in β values (with the percentage of methylation ranging from 0 to 1.0 at individual CpG sites). Our study is an extension of a previous analysis performed by our group and identified that: (1) as previously described, DNAm patterns at most CpG sites were established before birth and only a small group of genes underwent DNAm modifications postnatally, (2) this subset includes multiple immune genes critical for lymphocyte development, and (3) several members of the tumor necrosis factor receptor and cytokine superfamilies with essential roles in immune cell activation, survival, and lymphoid tissue development were among those with a larger postnatal variation. This study describes the precise epigenetic DNA methylation marks in important immune genes that change postnatally and raises relevant questions about the role of DNAm during postnatal immune development in early childhood. |
---|---|
ISSN: | 2075-4655 2075-4655 |
DOI: | 10.3390/epigenomes4030012 |