Effect of CeO2-ZnO Nanocomposite for Photocatalytic and Antibacterial Activities

The impact of a CeO2-ZnO nanocomposite on the photocatalytic and antibacterial properties compared to bare ZnO was investigated. A CeO2-ZnO nanocomposite was synthesized using Acacia nilotica fruit extract as a novel fuel by a simple solution combustion method. The obtained CeO2-ZnO nanocomposite wa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Crystals (Basel) 2020-09, Vol.10 (9), p.817
Hauptverfasser: Syed, Asad, Yadav, Lakshmi Sagar Reddy, Bahkali, Ali H., Elgorban, Abdallah M., Abdul Hakeem, Deshmukh, Ganganagappa, Nagaraju
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The impact of a CeO2-ZnO nanocomposite on the photocatalytic and antibacterial properties compared to bare ZnO was investigated. A CeO2-ZnO nanocomposite was synthesized using Acacia nilotica fruit extract as a novel fuel by a simple solution combustion method. The obtained CeO2-ZnO nanocomposite was confirmed structurally by XRD, FTIR, Raman and UV-DRS and morphologically by SEM/TEM analysis. The XRD pattern indicates the presence of both hexagonal Wurtzite-structured ZnO (major) and cubic-phase CeO2 (minor). FTIR shows the presence of a Ce-O-Ce vibration at 468 cm−1 and Zn-O vibration at 445 cm−1. The existence of a band at 460 cm−1 confirmed the F2g Raman-active mode of the fluorite cubic crystalline structure for CeO2. Diffused reflectance spectroscopy was used to estimate the bandgap (Eg) from Kubelka–Munk (K–M) theory which was found to be 3.4 eV. TEM analysis shows almost spherical-shaped particles, at a size of about 10–15 nm. The CeO2-ZnO nanocomposite shows a good BET specific surface area of 30 m2g−1. The surface defects and porosity of the CeO2-ZnO nanocomposite caused methylene blue (MB) dye to degrade under sunlight (88%) and UV light (92%). The CeO2-ZnO nanocomposite also exhibited considerable antibacterial activity against a pathogenic bacterial strain.
ISSN:2073-4352
2073-4352
DOI:10.3390/cryst10090817