Plastic shed production systems: The migration of heavy metals from soil to vegetables and human health risk assessment

Plastic shed production system (PSPS) provide abundant vegetable products for human consumption. Comprehensive and accurate heavy metal (HM) risk assessment of soil and vegetable under plastic sheds is crucial for human health. Pollution assessment, bioavailability and mobility evaluation and health...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecotoxicology and environmental safety 2021-06, Vol.215, p.112106, Article 112106
Hauptverfasser: Meng, Min, Yang, Linsheng, Wei, Binggan, Cao, Zhiqiang, Yu, Jiangping, Liao, Xiaoyong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Plastic shed production system (PSPS) provide abundant vegetable products for human consumption. Comprehensive and accurate heavy metal (HM) risk assessment of soil and vegetable under plastic sheds is crucial for human health. Pollution assessment, bioavailability and mobility evaluation and health risk assessment of Cd, Cr, Cu, Zn Ni, Pb, and As were performed in a presentative Plastic shed production system. The concentrations of the Cd, Cu and Zn exceeded their background value. Positive Igeo values suggested that soil under plastic sheds was widely contaminated with Cd. The bioavailability of heavy metals in soils was evaluated using DTPA extraction and DGT methods. The results of both methods demonstrated that Cd, Cu, and Zn have high bioavailability, especially Cd. Analogically, the results of mobility assignment based on DIFS showed that Cd has a high migration risk due to the large available pool. Based on specific cultivation and management patterns of plastic shed production system, pH reduction and salt and nutrient accumulation may increase the heavy metals migration risk in soil under plastic sheds, while a high organic matter content may reduce the heavy metals migration risk. The average concentrations of Cd, Cr, Cu, Zn, Ni, Pb, and As in vegetables were 0.023, 0.226, 0.654, 2.984, 0.329, 0.041, and 0.010 mg/kg, respectively. All samples were well below the threshold. The order of target hazard quotient of different heavy metals caused by vegetable consumption was Cd > Cr > As > Cu, Ni, Pb, Zn, and the average total hazard index value was below 1, which demonstrated that risk of vegetable consumption in the study area. However, due to its high concentration and transfer coefficient in spinach, Cd might pose a health risk to humans, which requires special attention. In this study, Cd caused a significant issue than other HMs, whether pollution level, health risk and migration risk. DGT and DIFS can be used as an effective evaluation tool in the research of controlling heavy metals migration in soil-crop systems. [Display omitted] •Cd, Cu, Zn are the main pollutant elements in soil under plastic shed, especially Cd.•Cd has a largest available pool compere to other HMs in soil under plastic shed.•DGT method can better reflect the transfer of heavy metals from soil to vegetables.•Cd accounts for the largest proportion of comprehensive health risks of HMs.
ISSN:0147-6513
1090-2414
DOI:10.1016/j.ecoenv.2021.112106