Fixed point problems for generalized contractions with applications

In this paper, we investigate the conditions on the control mappings ψ , φ : ( 0 , ∞ ) → R that guarantee the existence of the fixed points of the mapping T : X → P ( X ) satisfying the following inequalities: ψ ( H ( T x , T y ) ) ≤ φ ( d ( x , y ) ) ∀ x , y ∈ X , provided that  H ( T x , T y ) >...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in difference equations 2021-05, Vol.2021 (1), p.1-15, Article 247
Hauptverfasser: Nazam, Muhammad, Park, Choonkil, Arshad, Muhammad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we investigate the conditions on the control mappings ψ , φ : ( 0 , ∞ ) → R that guarantee the existence of the fixed points of the mapping T : X → P ( X ) satisfying the following inequalities: ψ ( H ( T x , T y ) ) ≤ φ ( d ( x , y ) ) ∀ x , y ∈ X , provided that  H ( T x , T y ) > 0 , and ψ ( H ( T x , T y ) ) ≤ φ ( A ( x , y ) ) ∀ x , y ∈ X , provided that  H ( T x , T y ) > 0 , where A ( x , y ) = max { d ( x , y ) , d ( x , T x ) , d ( y , T y ) , ( d ( x , T y ) + d ( T x , y ) ) / 2 } , and ( X , d ) is a metric space. The obtained fixed point results improve many earlier results on the set-valued contractions. As an application, we consider the existence of the solutions of an FDE.
ISSN:1687-1847
1687-1839
1687-1847
DOI:10.1186/s13662-021-03405-w