Votes on Twitter: Assessing Candidate Preferences and Topics of Discussion During the 2016 U.S. Presidential Election

Social media offers scholars new and innovative ways of understanding public opinion, including citizens’ prospective votes in elections and referenda. We classify social media users’ preferences over the two U.S. presidential candidates in the 2016 election using Twitter data and explore the topics...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SAGE open 2019-01, Vol.9 (1)
Hauptverfasser: Fang, Anjie, Habel, Philip, Ounis, Iadh, MacDonald, Craig
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Social media offers scholars new and innovative ways of understanding public opinion, including citizens’ prospective votes in elections and referenda. We classify social media users’ preferences over the two U.S. presidential candidates in the 2016 election using Twitter data and explore the topics of conversation among proClinton and proTrump supporters. We take advantage of hashtags that signaled users’ vote preferences to train our machine learning model which employs a novel classifier—a Topic-Based Naive Bayes model—that we demonstrate improves on existing classifiers. Our findings demonstrate that we are able to classify users with a high degree of accuracy and precision. We further explore the similarities and divergences among what proClinton and proTrump users discussed on Twitter.
ISSN:2158-2440
2158-2440
DOI:10.1177/2158244018791653