Validating an Operational Flood Forecast Model Using Citizen Science in Hampton Roads, VA, USA
Changes in the eustatic sea level have enhanced the impact of inundation events in the coastal zone, ranging in significance from tropical storm surges to pervasive nuisance flooding events. The increased frequency of these inundation events has stimulated the production of interactive web-map track...
Gespeichert in:
Veröffentlicht in: | Journal of marine science and engineering 2019-08, Vol.7 (8), p.242 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Changes in the eustatic sea level have enhanced the impact of inundation events in the coastal zone, ranging in significance from tropical storm surges to pervasive nuisance flooding events. The increased frequency of these inundation events has stimulated the production of interactive web-map tracking tools to cope with changes in our changing coastal environment. Tidewatch Maps, developed by the Virginia Institute of Marine Science (VIMS), is an effective example of an emerging street-level inundation mapping tool. Leveraging the Semi-implicit Cross-scale Hydro-science Integrated System Model (SCHISM) as the engine, Tidewatch operationally disseminates 36-h inundation forecast maps with a 12-h update frequency. SCHISM’s storm tide forecasts provide surge guidance for the legacy VIMS Tidewatch Charts sensor-based tidal prediction platform, while simultaneously providing an interactive and operationally functional forecast mapping tool with hourly temporal resolution and a 5 m spatial resolution throughout the coastal plain of Virginia, USA. This manuscript delves into the hydrodynamic modeling and geospatial methods used at VIMS to automate the 36-h street-level flood forecasts currently available via Tidewatch Maps, and the paradigm-altering efforts involved in validating the spatial, vertical, and temporal accuracy of the model. |
---|---|
ISSN: | 2077-1312 2077-1312 |
DOI: | 10.3390/jmse7080242 |