Effects of biochar on the manganese enrichment and oxidation by a microalga Scenedesmus quadricauda in the aquatic environment

Microalgae play a significant impact in the biogeochemical cycle of Mn(II) in the aquatic ecosystem. Meanwhile, the inflow of biochar into the water bodies is bound to impact the aquatic organisms. However, the influence of biochar on the manganese transformation in algae-rich water has not drawn mu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecotoxicology and environmental safety 2024-02, Vol.271, p.115961-115961, Article 115961
Hauptverfasser: Li, Yongchao, Zhou, Chuanfeng, Chen, Liping, Deng, Renjian, Wong, Minghung, Shan, Shengdao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Microalgae play a significant impact in the biogeochemical cycle of Mn(II) in the aquatic ecosystem. Meanwhile, the inflow of biochar into the water bodies is bound to impact the aquatic organisms. However, the influence of biochar on the manganese transformation in algae-rich water has not drawn much attention. Thus, we studied the effects of rice straw biochar on manganese enrichment and oxidation by a common type of algae in freshwater (Scenedesmus quadricauda). The results showed that Mn(II) was absorbed intracellularly and adsorbed extracellularly by active algal cells. A significant portion of enriched Mn(II) was oxidized to amorphous precipitates MnO2, MnOOH, and Mn2O3. Moreover, the extracellular bound Mn(II) content in the coexistent system of algae and biochar increased compared with the pure Scenedesmus quadricauda system. Nevertheless, the intracellular Mn content was continually lowered as the biochar dose rose from an initial 0.2 to 2.0 g·L−1, suggesting that Mn assimilation of the cell was suppressed. It was calculated that the total enrichment ability of Scenedesmus quadricauda in the algae-biochar coexistent system was 0.31- 15.32 mg Mn/g biomass, more than that in the pure algae system. More importantly, with biochar in the algae system, the amount of generated MnOx increased, and more Mn(II) was oxidized into highly-charged Mn(IV). This was probably because the biochar could relieve the stress of massive Mn(II) on algae and support the MnOx precipitates. In brief, moderate biochar promoted the Mn(II) accumulation by algal cells and its oxidation activity. This study offers deeper insight into the bioconversion of Mn(II) by algae and the potential impact of biochar application to the aquatic system. •Rice straw biochar reduced the massive Mn(II) stress on microalgae grown in water.•Biochar can prevent MnOx from depositing on Scenedesmus quadricauda cell surface.•With biochar in the algae system, more Mn(II) was oxidized into highly charged Mn(IV).•Mn absorbed into the algal cell in the coexistent system was suppressed.•The maximum extracellularly bound Mn per gram biomass reached 121.66 mg.
ISSN:0147-6513
1090-2414
DOI:10.1016/j.ecoenv.2024.115961