On graphs with minimal distance signless Laplacian energy
For a simple connected graph G of order n having distance signless Laplacian eigenvalues , the distance signless Laplacian energy DSLE(G) is defined as where W(G) is the Weiner index of G. We show that the complete split graph has the minimum distance signless Laplacian energy among all connected gr...
Gespeichert in:
Veröffentlicht in: | Acta universitatis sapientiae. Mathematica 2021-12, Vol.13 (2), p.450-467 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For a simple connected graph G of order n having distance signless Laplacian eigenvalues
, the distance signless Laplacian energy DSLE(G) is defined as
where W(G) is the Weiner index of G. We show that the complete split graph has the minimum distance signless Laplacian energy among all connected graphs with given independence number. Further, we prove that the graph K
∨ ( K
∪ K
),
has the minimum distance signless Laplacian energy among all connected graphs with vertex connectivity k. |
---|---|
ISSN: | 2066-7752 1844-6094 2066-7752 |
DOI: | 10.2478/ausm-2021-0028 |