On graphs with minimal distance signless Laplacian energy

For a simple connected graph G of order n having distance signless Laplacian eigenvalues , the distance signless Laplacian energy DSLE(G) is defined as where W(G) is the Weiner index of G. We show that the complete split graph has the minimum distance signless Laplacian energy among all connected gr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta universitatis sapientiae. Mathematica 2021-12, Vol.13 (2), p.450-467
Hauptverfasser: Pirzada, S., Rather, Bilal A., Shaban, Rezwan Ul, Merajuddin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For a simple connected graph G of order n having distance signless Laplacian eigenvalues , the distance signless Laplacian energy DSLE(G) is defined as where W(G) is the Weiner index of G. We show that the complete split graph has the minimum distance signless Laplacian energy among all connected graphs with given independence number. Further, we prove that the graph K ∨ ( K ∪ K ), has the minimum distance signless Laplacian energy among all connected graphs with vertex connectivity k.
ISSN:2066-7752
1844-6094
2066-7752
DOI:10.2478/ausm-2021-0028