Room-Temperature Hydrogen-Sensitive Pt-SnO2 Composite Nanoceramics: Contrasting Roles of Pt Nano-Catalysts Loaded via Two Different Methods
Soluble noble metal salts are widely used for loading noble metals as nano-catalysts in many applications. In this paper, Pt-SnO2 composite nanoceramics were prepared from SnO2 nanoparticles and H2PtCl6 using two Pt loading methods separately: for the solution reduction method, a H2PtCl6 solution wa...
Gespeichert in:
Veröffentlicht in: | Inorganics 2023-09, Vol.11 (9), p.366 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Soluble noble metal salts are widely used for loading noble metals as nano-catalysts in many applications. In this paper, Pt-SnO2 composite nanoceramics were prepared from SnO2 nanoparticles and H2PtCl6 using two Pt loading methods separately: for the solution reduction method, a H2PtCl6 solution was added to a suspension of SnO2 and zinc powder to form Pt on SnO2 nanoparticles, and for the impregnation method, Pt was formed from H2PtCl6 in the course of sintering. Although a series of samples prepared using both Pt loading methods showed a solid response to H2 at room temperature, the ones prepared using the solution reduction method exhibited much better room-temperature hydrogen-sensing characteristics. For two samples of 0.5 wt% Pt and sintered at 825 °C, the response value for the sample prepared using the solution reduction method was 9700 to 1% H2–20% O2-N2, which was much larger than the value of 145 for the sample prepared using the impregnation method. Samples prepared using the two Pt loading methods have similar microstructures characterized via XRD, FESEM, EDS, TEM, and HRTEM. However, the residual chlorine content in those using the impregnation method was higher than those using the solution reduction method according to the analysis. It is proposed that the striking difference in room-temperature hydrogen sensing characteristics among samples prepared using these two different Pt loading methods separately resulted from their different chlorine removal processes. This study demonstrates the importance of a proper method for loading noble metals from their soluble salts as nano-catalysts in many applications. |
---|---|
ISSN: | 2304-6740 2304-6740 |
DOI: | 10.3390/inorganics11090366 |