Size-Dependent Biological Effects of Quercetin Nanocrystals

Quercetin (QE) is an attractive natural compound for cancer prevention due to its beneficial anti-oxidative and anti-proliferative effects. However, QE is poorly soluble in water and slightly soluble in oil, which results in its low oral bioavailability and limits its application in the clinic. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecules (Basel, Switzerland) Switzerland), 2019-04, Vol.24 (7), p.1438
Hauptverfasser: Liu, Qian, Yang, Xi, Sun, Jianxu, Yu, Fanglin, Zhang, Hui, Gao, Jing, Zheng, Aiping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Quercetin (QE) is an attractive natural compound for cancer prevention due to its beneficial anti-oxidative and anti-proliferative effects. However, QE is poorly soluble in water and slightly soluble in oil, which results in its low oral bioavailability and limits its application in the clinic. The aim of this study was to prepare QE nanocrystals (QE-NCs) with improved solubility and high drug loading, furthermore, the size-dependent anti-cancer effects of QE-NCs were studied. We prepared QE-NCs with three different particle sizes by wet milling, then, cell proliferation, migration and invasion were studied in A549 cells. The QE-NCs had antitumor effects in a dose- and size-dependent manner. Compared with the large particles, the small particles had a strong inhibitory impact on cell biological effects ( < 0.05 or < 0.01). Moreover, Western blot assay indicated that QE-NCs may inhibit the migration and invasion of A549 cells by inhibiting the STAT3 signaling pathway, and the particle size may have an effect on this process. In this study, it was proven that NCs could dramatically enhance the anticancer efficacy of QE at the cellular level. In addition, particle size had a considerable influence on the dissolution behavior and antitumor effects of NCs.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules24071438