Optimization of Synthesis of Seleno-Sargassum fusiforme (Harv.) Setch. Polysaccharide by Response Surface Methodology, Its Characterization, and Antioxidant Activity

The response surface methodology was employed to optimize the synthesis conditions of seleno-Sargassum fusiforme (Harv.) Setch. polysaccharide. Three independent variables (reaction time, reaction temperature, and ratio of Na2SeO3 to SFPSI) were tested. Furthermore, the characterization and antioxid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemistry 2013-01, Vol.2013 (1)
Hauptverfasser: Ji, Yu-Bin, Dong, Fang, Yu, Miao, Qin, Long, Liu, Dan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The response surface methodology was employed to optimize the synthesis conditions of seleno-Sargassum fusiforme (Harv.) Setch. polysaccharide. Three independent variables (reaction time, reaction temperature, and ratio of Na2SeO3 to SFPSI) were tested. Furthermore, the characterization and antioxidant activity of Se-SFPSI in vivo were investigated. The result showed that the actual experimental Se content of Se-SFPSI was 3.352 mg/g at the optimum reaction conditions of reaction time 8 h, reaction temperature 71°C, and ratio of Na2SeO3 to SFPSIB 1.0 g/g. A series of experiments showed that the characterization of Se-SFPSIB was significantly different from that of SFPSIB. Additionally, antioxidant activity assay indicated that the Se-SFPSIB could increase catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) activity of mice bearing tumor S180 in blood, heart, and liver while decreasing malondialdehyde (MDA) levels. It can be concluded that selenylation is a feasible approach to obtain seleno-polysaccharide which was utilized as highly biological medicine or functional food.
ISSN:2090-9063
2090-9071
DOI:10.1155/2013/493524