Broken Rotor Bar Detection Based on Steady-State Stray Flux Signals Using Triaxial Sensor with Random Positioning

This paper investigates the detection of broken rotor bar in squirrel cage induction motors using a novel approach of randomly positioning a triaxial sensor over the motor surface. This study is conducted on two motors under laboratory conditions, where one motor is kept in a healthy state, and the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2024-05, Vol.24 (10), p.3080
Hauptverfasser: Zubčić, Marko, Pavić, Ivan, Matić, Petar, Polak, Adam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper investigates the detection of broken rotor bar in squirrel cage induction motors using a novel approach of randomly positioning a triaxial sensor over the motor surface. This study is conducted on two motors under laboratory conditions, where one motor is kept in a healthy state, and the other is subjected to a broken rotor bar (BRB) fault. The induced electromotive force of the triaxial coils, recorded over ten days with 100 measurements per day, is statistically analyzed. Normality tests and graphical interpretation methods are used to evaluate the data distribution. Parametric and non-parametric approaches are used to analyze the data. Both approaches show that the measurement method is valid and consistent over time and statistically distinguishes healthy motors from those with BRB defects when a reference or threshold value is specified. While the comparison between healthy motors shows a discrepancy, the quantitative analysis shows a smaller estimated difference in mean values between healthy motors than comparing healthy and BRB motors.
ISSN:1424-8220
1424-8220
DOI:10.3390/s24103080