Angiotensin-converting enzyme 2. Approaches to pathogenetic therapy of COVID-19

The SARS-CoV-2 virus is a pathogen causing the coronavirus infection that culminated in a worldwide pandemic in 2020. It belongs to β-coronaviruses and has high genetic similarity to the SARS-CoV virus that is responsible for an outbreak of severe acute respiratory syndrome in 2002–2003. The analysi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Žurnal mikrobiologii, ėpidemiologii i immunobiologii ėpidemiologii i immunobiologii, 2020-09, Vol.97 (4), p.339-345
Hauptverfasser: Shatunova, Polina O., Bykov, Anatoly S., Svitich, Oksana A., Zverev, Vitaly V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The SARS-CoV-2 virus is a pathogen causing the coronavirus infection that culminated in a worldwide pandemic in 2020. It belongs to β-coronaviruses and has high genetic similarity to the SARS-CoV virus that is responsible for an outbreak of severe acute respiratory syndrome in 2002–2003. The analysis of molecular interactions shows that SARS-CoV-2 has higher virulence due to lower binding free energy in interaction with the angiotensin-converting enzyme 2 (ACE2), which is used by the virus to enter the host cell. At the time of the global coronavirus pandemic, the thorough study of ACE2 as a key component of the disease pathogenesis comes to the fore. The detailed study of the enzyme, which is a receptor located on the surface of different tissues and which normally catalyzes the conversion of angiotensin II to angiotensin (1–7), led to diverging conclusions. Being non-tissue specific, the receptor is abundantly present in the heart, kidneys, small intestine, testes, thyroid, and adipose tissue. Besides regulating blood pressure, it suppresses inflammation, mainly in the lung tissue, participates in amino acid transport and maintains the activity of the gut microbiome. With all its essential positive functions, the role of ACE2 is highly ambiguous, specifically in coronavirus infection. The influence on the renin-angiotensin system can be seen as a promising therapeutic route in treatment of coronavirus infection. The preliminary data on using of ACE2 inhibitors, soluble forms of ACE2, and angiotensin II receptor blockers demonstrate their effectiveness and, consequently, improvement in symptoms and prognoses for patients with coronavirus infection. The review presents information about ACE2 distribution in human tissues, explores its interaction with SARS-CoV-2, provides a theoretical basis for medications involving ACE2 metabolic pathways and for using them in treatment of coronavirus infection and its prevention.
ISSN:0372-9311
2686-7613
DOI:10.36233/0372-9311-2020-97-4-6