The mito-DAMP cardiolipin blocks IL-10 production causing persistent inflammation during bacterial pneumonia

Bacterial pneumonia is a significant healthcare burden worldwide. Failure to resolve inflammation after infection precipitates lung injury and an increase in morbidity and mortality. Gram-negative bacteria are common in pneumonia and increased levels of the mito-damage-associated molecular pattern (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2017-01, Vol.8 (1), p.13944-13944, Article 13944
Hauptverfasser: Chakraborty, Krishnendu, Raundhal, Mahesh, Chen, Bill B., Morse, Christina, Tyurina, Yulia Y., Khare, Anupriya, Oriss, Timothy B., Huff, Rachael, Lee, Janet S., St. Croix, Claudette M., Watkins, Simon, Mallampalli, Rama K., Kagan, Valerian E., Ray, Anuradha, Ray, Prabir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bacterial pneumonia is a significant healthcare burden worldwide. Failure to resolve inflammation after infection precipitates lung injury and an increase in morbidity and mortality. Gram-negative bacteria are common in pneumonia and increased levels of the mito-damage-associated molecular pattern (DAMP) cardiolipin can be detected in the lungs. Here we show that mice infected with Klebsiella pneumoniae develop lung injury with accumulation of cardiolipin. Cardiolipin inhibits resolution of inflammation by suppressing production of anti-inflammatory IL-10 by lung CD11b + Ly6G int Ly6C lo F4/80 + cells. Cardiolipin induces PPARγ SUMOylation, which causes recruitment of a repressive NCOR/HDAC3 complex to the IL-10 promoter, but not the TNF promoter, thereby tipping the balance towards inflammation rather than resolution. Inhibition of HDAC activity by sodium butyrate enhances recruitment of acetylated histone 3 to the IL-10 promoter and increases the concentration of IL-10 in the lungs. These findings identify a mechanism of persistent inflammation during pneumonia and indicate the potential of HDAC inhibition as a therapy. Non-resolving bacterial pneumonia results in lung tissue damage owing to overactive inflammation. Here the authors show that the mitochondrial DAMP cardiolipin contributes to persistent inflammation by SUMOylating PPARγ, which promotes binding of the corepressor NCOR/HDAC3 complex to the IL-10 promoter.
ISSN:2041-1723
2041-1723
DOI:10.1038/ncomms13944