Targeting Ser78 phosphorylation of Hsp27 achieves potent antiviral effects against enterovirus A71 infection

A positive-sense (+) single-stranded RNA (ssRNA) virus (e.g. enterovirus A71, EV-A71) depends on viral polypeptide translation for initiation of virus replication after entry. We reported that EV-A71 hijacks Hsp27 to induce hnRNP A1 cytosol redistribution to initiate viral protein translation, but t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Emerging microbes & infections 2024-12, Vol.13 (1), p.2368221
Hauptverfasser: Wu, Mandi, Wan, Qianya, Dan, Xuelian, Wang, Yiran, Chen, Peiran, Chen, Cien, Li, Yichen, Yao, Xi, He, Ming-Liang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A positive-sense (+) single-stranded RNA (ssRNA) virus (e.g. enterovirus A71, EV-A71) depends on viral polypeptide translation for initiation of virus replication after entry. We reported that EV-A71 hijacks Hsp27 to induce hnRNP A1 cytosol redistribution to initiate viral protein translation, but the underlying mechanism is still elusive. Here, we show that phosphorylation-deficient Hsp27-3A (Hsp27 ) and Hsp27 fail to translocate into the nucleus and induce hnRNP A1 cytosol redistribution, while Hsp27 and Hsp27 display similar effects to the wild type Hsp27. Furthermore, we demonstrate that the viral 2A protease (2A ) activity is a key factor in regulating Hsp27/hnRNP A1 relocalization. Hsp27 dramatically decreases the IRES activity and viral replication, which are partially reduced by Hsp27 . However, Hsp27 displays the same activity as the wild-type Hsp27. Peptide S78 potently suppresses EV-A71 protein translation and reproduction through blockage of EV-A71-induced Hsp27 phosphorylation and Hsp27/hnRNP A1 relocalization. A point mutation (S78A) on S78 impairs its inhibitory functions on Hsp27/hnRNP A1 relocalization and viral replication. Taken together, we demonstrate the importance of Ser78 phosphorylation of Hsp27 regulated by virus infection in nuclear translocation, hnRNP A1 cytosol relocation, and viral replication, suggesting a new path (such as peptide S78) for target-based antiviral strategy.
ISSN:2222-1751
2222-1751
DOI:10.1080/22221751.2024.2368221