Normalized solutions to the Schrödinger systems with double critical growth and weakly attractive potentials
In this paper, we look for solutions to the following critical Schrödinger system { − Δ u + ( V 1 + λ 1 ) u = | u | 2 ∗ − 2 u + | u | p 1 − 2 u + β r 1 | u | r 1 − 2 u | v | r 2 i n R N , − Δ v + ( V 2 + λ 2 ) v = | v | 2 ∗ − 2 v + | v | p 2 − 2 v + β r 2 | u | r 1 | v | r 2 − 2 v i n R N , havi...
Gespeichert in:
Veröffentlicht in: | Electronic journal of qualitative theory of differential equations 2023-01, Vol.2023 (42), p.1-22 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we look for solutions to the following critical Schrödinger system
{
−
Δ
u
+
(
V
1
+
λ
1
)
u
=
|
u
|
2
∗
−
2
u
+
|
u
|
p
1
−
2
u
+
β
r
1
|
u
|
r
1
−
2
u
|
v
|
r
2
i
n
R
N
,
−
Δ
v
+
(
V
2
+
λ
2
)
v
=
|
v
|
2
∗
−
2
v
+
|
v
|
p
2
−
2
v
+
β
r
2
|
u
|
r
1
|
v
|
r
2
−
2
v
i
n
R
N
,
having prescribed mass
∫
R
N
u
2
=
a
1
>
0
and
∫
R
N
v
2
=
a
2
>
0
, where
λ
1
,
λ
2
∈
R
will arise as Lagrange multipliers,
N
⩾
3
,
2
∗
=
2
N
/
(
N
−
2
)
is the Sobolev critical exponent,
r
1
,
r
2
>
1
,
p
1
,
p
2
,
r
1
+
r
2
∈
(
2
+
4
/
N
,
2
∗
)
and
β
>
0
is a coupling constant. Under suitable conditions on the potentials
V
1
and
V
2
,
β
∗
>
0
exists such that the above Schrödinger system admits a positive radial normalized solution when
β
⩾
β
∗
. The proof is based on comparison argument and minmax method. |
---|---|
ISSN: | 1417-3875 1417-3875 |
DOI: | 10.14232/ejqtde.2023.1.42 |