A landscape of X-inactivation during human T cell development

Females exhibit a more robust immune response to both self-antigens and non-self-antigens than males, resulting in a higher prevalence of autoimmune diseases but more effective responses against infection. Increased expression of X-linked immune genes in female T cells is thought to underlie this en...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2024-12, Vol.15 (1), p.10527-14, Article 10527
Hauptverfasser: Gylemo, Björn, Bensberg, Maike, Hennings, Viktoria, Lundqvist, Christina, Camponeschi, Alessandro, Goldmann, Dóra, Zhang, Huan, Selimović-Pašić, Aida, Lentini, Antonio, Ekwall, Olov, Nestor, Colm E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Females exhibit a more robust immune response to both self-antigens and non-self-antigens than males, resulting in a higher prevalence of autoimmune diseases but more effective responses against infection. Increased expression of X-linked immune genes in female T cells is thought to underlie this enhanced response. Here we isolate thymocytes from pediatric thymi of healthy males (46, XY), females (46, XX), a female with completely skewed X-chromosome inactivation (46, XX, cXCI) and a female with Turner syndrome (45, X0). Using whole exome sequencing, RNA sequencing and DNA methylation data, we present a sex-aware expression profile of T cell development and generate a high-resolution map of escape from X-chromosome inactivation (XCI). Unexpectedly, XCI is transcriptionally and epigenetically stable throughout T cell development, and is independent of expression of XIST , the lncRNA responsible for XCI initiation during early embryonic development. In thymocytes, several genes known to escape XCI are expressed from only one X-chromosome. Additionally, we further reveal that a second X-chromosome is dispensable for T cell development. Our study thus provides a high-resolution map of XCI during human development and suggests a re-evaluation of XCI in sex differences in T cell function. X-chromosome inactivation (XCI) contributes to sex bias in T cell immunity, but data on profiling XCI during human T cell development is still lacking. Here, the authors leverage allele-specific expression, sex-biased gene expression and DNA methylation data on human pediatric thymocytes to find surprisingly stable XCI during thymocyte differentiation.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-024-54110-7