Analysis and Comparison of Permanent Magnet Synchronous Motors According to Rotor Type under the Same Design Specifications

A surface-mounted permanent magnet synchronous motor (SPMSM) is an electric motor with a simple magnetic circuit design, fast responsiveness, linear torque–current characteristics, speed–voltage characteristics, and constant operating speed. SPMSMs use only magnetic torque; however, interior PMSMs (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) 2023-01, Vol.16 (3), p.1306
Hauptverfasser: Jung, Woo-Sung, Lee, Hoon-Ki, Lee, Young-Keun, Kim, Su-Min, Lee, Jeong-In, Choi, Jang-Young
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A surface-mounted permanent magnet synchronous motor (SPMSM) is an electric motor with a simple magnetic circuit design, fast responsiveness, linear torque–current characteristics, speed–voltage characteristics, and constant operating speed. SPMSMs use only magnetic torque; however, interior PMSMs (IPMSMs) have high power densities because they can use reluctance torque. In addition, when flux-weakening control is used, the operating range is wide compared with the SPMSM. This study presents a comparative analysis of the characteristics of SPMSM and bar-type IPMSM. Characteristic analyses are performed by setting the same stator shape, rated speed, number of turns, winding specifications, voltage limit, and magnet usage in a pole/slot combination of six poles and 27 slots. Next, we compare the no-load back electromotive force, cogging torque, and loss characteristics, and perform a characteristic analysis of each model while satisfying the design specifications. No-load and load tests are performed using a back-to-back system. The results of the analysis and experimental results are in good agreement, and the reliability of the analysis results is guaranteed. The SPMSM is approximately 8.5% superior to the IPMSM in terms of core loss, and the eddy current loss is greater than that of the IPMSM.
ISSN:1996-1073
1996-1073
DOI:10.3390/en16031306