Knockdown SENP1 Suppressed the Angiogenic Potential of Mesenchymal Stem Cells by Impacting CXCR4-Regulated MRTF-A SUMOylation and CCN1 Expression

The angiogenic potential of mesenchymal stem cells (MSCs) is critical for adult vascular regeneration and repair, which is regulated by various growth factors and cytokines. In the current study, we report that knockdown SUMO-specific peptidase 1 (SENP1) stimulated the SUMOylation of MRTF-A and prev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomedicines 2023-03, Vol.11 (3), p.914
Hauptverfasser: Zhang, Rui, Liu, Qingxi, Lyu, Cuicui, Gao, Xing, Ma, Wenjian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The angiogenic potential of mesenchymal stem cells (MSCs) is critical for adult vascular regeneration and repair, which is regulated by various growth factors and cytokines. In the current study, we report that knockdown SUMO-specific peptidase 1 (SENP1) stimulated the SUMOylation of MRTF-A and prevented its translocation into the nucleus, leading to downregulation of the cytokine and angiogenic factor CCN1, which significantly impacted MSC-mediated angiogenesis and cell migration. Further studies showed that knockdown also suppressed the expression of a chemokine receptor CXCR4, and overexpression of CXCR4 could partially abrogate MRTF-A SUMOylation and reestablish the CCN1 level. Mutation analysis confirmed that SUMOylation occurred on three lysine residues (Lys-499, Lys-576, and Lys-624) of MRTF-A. In addition, knockdown abolished the synergistic co-activation of CCN1 between MRTF-A and histone acetyltransferase p300 by suppressing acetylation on histone3K9, histone3K14, and histone4. These results revealed an important signaling pathway to regulate MSC differentiation and angiogenesis by MRTF-A SUMOylation involving cytokine/chemokine activities mediated by CCN1 and CXCR4, which may potentially impact a variety of cellular processes such as revascularization, wound healing, and progression of cancer.
ISSN:2227-9059
2227-9059
DOI:10.3390/biomedicines11030914