Stress sensitivity of tight reservoirs during pressure loading and unloading process

Laboratory experiments were conducted on laboratory-made tight cores to investigate the stress-dependent permeability hysteresis of tight reservoirs during pressure loading and unloading process. Based on experiment results, and Hertz contact deformation principle, considering arrangement and deform...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Petroleum exploration and development 2019-02, Vol.46 (1), p.138-144
Hauptverfasser: CAO, Nai, LEI, Gang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Laboratory experiments were conducted on laboratory-made tight cores to investigate the stress-dependent permeability hysteresis of tight reservoirs during pressure loading and unloading process. Based on experiment results, and Hertz contact deformation principle, considering arrangement and deformation of rock particles, a quantitative stress dependent permeability hysteresis theoretical model for tight reservoirs was established to provide quantitative analysis for permeability loss. The model was validated by comparing model calculated results and experimental results. The research results show that during the early pressure-loading period, structural deformation and primary deformation worked together, rock permeability reduced dramatically with increasing effective stress. When the effective stress reached a certain value, the structural deformation became stable while the primary deformation continued; the permeability variation tended to be smooth and steady. In the pressure unloading process, the primary deformation recovered with the decreasing effective stress, while the structural deformation could not. The permeability thus could not fully recover, and the stress-dependent hysteresis was obvious.
ISSN:1876-3804
1876-3804
DOI:10.1016/S1876-3804(19)30013-8