Empagliflozin improves aortic injury in obese mice by regulating fatty acid metabolism
Empagliflozin has been shown in clinical studies to lower the risk of adverse cardiovascular events. Using proteomics, the current study aims to determine whether empagliflozin reduces aortic alterations in obese mice and to investigate its molecular mechanism of action. We constructed obese mice an...
Gespeichert in:
Veröffentlicht in: | Open medicine (Warsaw, Poland) Poland), 2024-08, Vol.19 (1), p.20241012-6 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Empagliflozin has been shown in clinical studies to lower the risk of adverse cardiovascular events. Using proteomics, the current study aims to determine whether empagliflozin reduces aortic alterations in obese mice and to investigate its molecular mechanism of action.
We constructed obese mice and then treated them with empagliflozin. Changes in the weight of the mice were recorded. Blood glucose and lipid levels were measured in each group of mice, and changes in pulse wave velocity and aortic structure were recorded. In addition, changes in aortic protein expression were detected by proteomics and analyzed bioinformatically.
Proteomics results showed that 507 differentially expressed proteins (DEPs) were identified in the comparison of normal and obese mice, while 90 DEPs were identified in the comparison of obese and empagliflozin-treated mice. Examination of these three groups revealed that DEPs were largely associated with the digestion of unsaturated fats. Among them, empagliflozin significantly reduced the expression of fatty acid synthase (FASN), acyl-CoA desaturase 3 (SCD3), ACSL1. and ACSL5 in the aorta of obesity-induced mice, and there was a close relationship between the four.
Empagliflozin reduced the protein expression of FASN, SCD3, ACSL1, and ACSL5 in the aorta of obese mice and improved aortic fatty acid metabolism and reduced vascular stiffness for vasoprotective effects. |
---|---|
ISSN: | 2391-5463 2391-5463 |
DOI: | 10.1515/med-2024-1012 |