Secondary Flow Loss Reduction in a Turbine Cascade with a Linearly Varied Height Streamwise Endwall Fence

The present study attempts to reduce secondary flow losses by application of streamwise endwall fence. After comprehensive analysis on selection of objective function for secondary flow loss reduction, coefficient of secondary kinetic energy (CSKE) is selected as the objective function in this study...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Journal of Rotating Machinery 2011-01, Vol.2011 (2011), p.h1-16
Hauptverfasser: Kumar, Krishna Nandan, Govardhan, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The present study attempts to reduce secondary flow losses by application of streamwise endwall fence. After comprehensive analysis on selection of objective function for secondary flow loss reduction, coefficient of secondary kinetic energy (CSKE) is selected as the objective function in this study. A fence whose height varies linearly from the leading edge to the trailing edge and located in the middle of the flow passage produces least CSKE and is the optimum fence. The reduction in CSKE by the optimum fence is 27% compared to the baseline case. The geometry of the fence is new and is reported for the first time. Idea of this fence comes from the fact that the size of the passage vortex (which is the prime component of secondary flow) increases as it travels downstream, hence the height of fence should vary as the objective of fence is to block the passage vortex from crossing the passage and impinging on suction surface of the blade. Optimum fence reduced overturning and underturning of flow by more than 50% compared to the baseline case. Magnitude and spanwise penetration of the passage vortex were reduced considerably compared to the baseline case.
ISSN:1023-621X
1542-3034
DOI:10.1155/2011/352819