K-Means Clustering and Multilayer Perceptron for Categorizing Student Business Groups
The research conducted in this study was driven by the East Java provincial government's requirement to assess the transaction levels of the Student Business Group (KUS) in the SMA Double Track program. These transaction levels are a basis for allocating supplementary financial aid to each busi...
Gespeichert in:
Veröffentlicht in: | Knowledge engineering and data science (Online) 2023-09, Vol.6 (1), p.69-78 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The research conducted in this study was driven by the East Java provincial government's requirement to assess the transaction levels of the Student Business Group (KUS) in the SMA Double Track program. These transaction levels are a basis for allocating supplementary financial aid to each business group. The system's primary objective is to assist the provincial government of East Java in making well-informed choices pertaining to the distribution of supplementary capital to the KUS. The classification technique employed in this study is the multilayer perceptron. However, the K-Means Clustering method is utilised to generate target data due to the limited availability during the classification process, which involves dividing the transaction level attributes into three distinct groups: (0) low transactions, (1) medium transactions, and (2) high transactions. The clustering process encompasses three distinct features: (1) income, (2) spending, and (3) profit. These three traits will be utilized as input data throughout the categorization procedure. The classification procedure employing the Multilayer Perceptron technique involved processing a dataset including 1383 data points. The training data constituted 80% of the dataset, while the remaining 20% was allocated for testing. In order to evaluate the efficacy of the constructed model, the training error was assessed using K-Fold cross-validation, yielding an average accuracy score of 0.92. In the present study, the categorization technique yielded an accuracy of 0.96. This model aims to classify scenarios when the dataset lacks prior target data. |
---|---|
ISSN: | 2597-4602 2597-4637 |
DOI: | 10.17977/um018v6i12023p69-78 |