Pb-rich Cu grain boundary sites for selective CO-to-n-propanol electroconversion

Electrochemical carbon monoxide (CO) reduction to high-energy-density fuels provides a potential way for chemical production and intermittent energy storage. As a valuable C 3 species, n-propanol still suffers from a relatively low Faradaic efficiency (FE), sluggish conversion rate and poor stabilit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2023-08, Vol.14 (1), p.4882-4882, Article 4882
Hauptverfasser: Niu, Wenzhe, Chen, Zheng, Guo, Wen, Mao, Wei, Liu, Yi, Guo, Yunna, Chen, Jingzhao, Huang, Rui, Kang, Lin, Ma, Yiwen, Yan, Qisheng, Ye, Jinyu, Cui, Chunyu, Zhang, Liqiang, Wang, Peng, Xu, Xin, Zhang, Bo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Electrochemical carbon monoxide (CO) reduction to high-energy-density fuels provides a potential way for chemical production and intermittent energy storage. As a valuable C 3 species, n-propanol still suffers from a relatively low Faradaic efficiency (FE), sluggish conversion rate and poor stability. Herein, we introduce an “atomic size misfit” strategy to modulate active sites, and report a facile synthesis of a Pb-doped Cu catalyst with numerous atomic Pb-concentrated grain boundaries. Operando spectroscopy studies demonstrate that these Pb-rich Cu-grain boundary sites exhibit stable low coordination and can achieve a stronger CO adsorption for a higher surface CO coverage. Using this Pb-Cu catalyst, we achieve a CO-to-n-propanol FE (FE propanol ) of 47 ± 3% and a half-cell energy conversion efficiency (EE) of 25% in a flow cell. When applied in a membrane electrode assembly (MEA) device, a stable FE propanol above 30% and the corresponding full-cell EE of over 16% are maintained for over 100 h with the n-propanol partial current above 300 mA (5 cm 2 electrode). Furthermore, operando X-ray absorption spectroscopy and theoretical studies reveal that the structurally-flexible Pb-Cu surface can adaptively stabilize the key intermediates, which strengthens the *CO binding while maintaining the C–C coupling ability, thus promoting the CO-to-n-propanol conversion. CO electroreduction to valuable high-energy content fuels is desired yet improving multicarbon C3 selectivity remains challenging. Here, authors enhance the n-propanol formation on a Cu-based electrocatalyst by introducing Pb atoms into the Cu lattice to induce Pb-rich Cu grain boundary sites.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-023-40689-w