Identification of a herpes simplex virus 1 gene encoding neurovirulence factor by chemical proteomics
Identification of the complete set of translated genes of viruses is important to understand viral replication and pathogenesis as well as for therapeutic approaches to control viral infection. Here, we use chemical proteomics, integrating bio-orthogonal non-canonical amino acid tagging and high-res...
Gespeichert in:
Veröffentlicht in: | Nature communications 2020-09, Vol.11 (1), p.4894-4894, Article 4894 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Identification of the complete set of translated genes of viruses is important to understand viral replication and pathogenesis as well as for therapeutic approaches to control viral infection. Here, we use chemical proteomics, integrating bio-orthogonal non-canonical amino acid tagging and high-resolution mass spectrometry, to characterize the newly synthesized herpes simplex virus 1 (HSV-1) proteome in infected cells. In these infected cells, host cellular protein synthesis is shut-off, increasing the chance to preferentially detect viral proteomes. We identify nine previously cryptic orphan protein coding sequences whose translated products are expressed in HSV-1-infected cells. Functional characterization of one identified protein, designated piUL49, shows that it is critical for HSV-1 neurovirulence in vivo by regulating the activity of virally encoded dUTPase, a key enzyme that maintains accurate DNA replication. Our results demonstrate that cryptic orphan protein coding genes of HSV-1, and probably other large DNA viruses, remain to be identified.
Here the authors use chemical proteomics to identify the herpes simplex virus 1 encoded proteome in infected cells. Functional characterization of one of the nine identified proteins, designated piUL49, shows that it acts as neurovirulence factor in mice by regulating a virally encoded dUTPase. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-020-18718-9 |