{\mathcal{L}}$ -INVARIANTS AND LOCAL–GLOBAL COMPATIBILITY FOR THE GROUP $\text{GL}_{2}/F
Let $F$ be a totally real number field, ${\wp}$ a place of $F$ above $p$ . Let ${\it\rho}$ be a $2$ -dimensional $p$ -adic representation of $\text{Gal}(\overline{F}/F)$ which appears in the étale cohomology of quaternion Shimura curves (thus ${\it\rho}$ is associated to Hilbert eigenforms). When th...
Gespeichert in:
Veröffentlicht in: | Forum of mathematics. Sigma 2016, Vol.4 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
$F$
be a totally real number field,
${\wp}$
a place of
$F$
above
$p$
. Let
${\it\rho}$
be a
$2$
-dimensional
$p$
-adic representation of
$\text{Gal}(\overline{F}/F)$
which appears in the étale cohomology of quaternion Shimura curves (thus
${\it\rho}$
is associated to Hilbert eigenforms). When the restriction
${\it\rho}_{{\wp}}:={\it\rho}|_{D_{{\wp}}}$
at the decomposition group of
${\wp}$
is semistable noncrystalline, one can associate to
${\it\rho}_{{\wp}}$
the so-called Fontaine–Mazur
${\mathcal{L}}$
-invariants, which are however invisible in the classical local Langlands correspondence. In this paper, we prove one can find these
${\mathcal{L}}$
-invariants in the completed cohomology group of quaternion Shimura curves, which generalizes some of Breuil’s results [Breuil, Astérisque, 331 (2010), 65–115] in the
$\text{GL}_{2}/\mathbb{Q}$
-case. |
---|---|
ISSN: | 2050-5094 |
DOI: | 10.1017/fms.2016.9 |