COPD, PRISm and lung function reduction affect the brain cortical structure: a Mendelian randomization study

Chronic obstructive pulmonary disease (COPD) has been associated with alterations in the brain cortical structure. Nonetheless, the causality between COPD and brain cortical structure has not been determined. In the present study, we used Mendelian randomization (MR) analysis to explore the causal e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC pulmonary medicine 2024-07, Vol.24 (1), p.341-13, Article 341
Hauptverfasser: Fang, Chuangsen, Li, Ao, Li, Yanming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Chronic obstructive pulmonary disease (COPD) has been associated with alterations in the brain cortical structure. Nonetheless, the causality between COPD and brain cortical structure has not been determined. In the present study, we used Mendelian randomization (MR) analysis to explore the causal effects of genetic predicated COPD on brain cortical structure, namely cortical surface area (SA) and cortical thickness (TH). Genetic association summary data for COPD were obtained from the FinnGen consortium (N = 358,369; Ncase = 20,066). PRISm summary genetic data were retrieved from a case-control GWAS conducted in the UK Biobank (N = 296,282). Lung function indices, including forced expiratory volume in one second (FEV1), forced vital capacity (FVC), and FEV1/FVC, were extracted from a meta-analysis of the UK Biobank and SpiroMeta consortium (N = 400,102). Brain cortical structure data were obtained from the ENIGMA consortium (N = 51,665). Inverse-variance weighted (IVW) method was used as the primary analysis, and a series of sensitivity tests were exploited to evaluate the heterogeneity and pleiotropy of our results. The results identified potential causal effects of COPD on several brain cortical specifications, including pars orbitalis, cuneus and inferior parietal gyrus. Furthermore, genetic predicated lung function index (FEV1, FVC and FEV1/FVC), as well as PRISm, also has causal effects on brain cortical structure. According to our results, a total of 15 functional specifications were influenced by lung function index and PRISm. These findings contribute to understanding the causal effects of COPD and lung function to brain cortical structure.
ISSN:1471-2466
1471-2466
DOI:10.1186/s12890-024-03150-2