Eucalyptus Short-Rotation Management Effects on Nutrient and Sediments in Subtropical Streams
Forested catchments generally present conserved aquatic ecosystems without anthropogenic disturbances; however, forest management operations can degrade these environments, including their water quality. Despite the potential degradation, few studies have analyzed the effects of forest management in...
Gespeichert in:
Veröffentlicht in: | Forests 2019-06, Vol.10 (6), p.519 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Forested catchments generally present conserved aquatic ecosystems without anthropogenic disturbances; however, forest management operations can degrade these environments, including their water quality. Despite the potential degradation, few studies have analyzed the effects of forest management in subtropical regions, especially in forest plantations with intensive management, such as Eucalyptus plantations in Brazil. The intensive management of those plantations is characterized by fast-growing, short rotation cycles, and high productivity. This study aimed to assess the effects of Eucalyptus plantations harvesting on the concentration and exportation of nutrients and suspended solids in subtropical streams. Results showed that clear-cut harvesting and subsequent forest management operations do not alter most of the concentration of nitrate, potassium, calcium, and magnesium. The concentration of suspended solids increased during the first year after timber harvesting in all studied catchments, however, the increases were statistically significant in only two catchments. In the first year after harvest, it was observed an increment of water yield/precipitation ratio at three catchments, which also increased export of nutrients and suspended solids. Our results showed that harvesting of fast-growing Eucalyptus forest plantations partially affected sediment exports and did not compromise water quality in the studied catchments. However, the catchment land-use design, especially related to road density and land-use composition, showed significant relationship with sediment exportation. |
---|---|
ISSN: | 1999-4907 1999-4907 |
DOI: | 10.3390/f10060519 |