Application of a new designed high resolution melting analysis for mycobacterial species identification

The Non-tuberculous mycobacterial (NTM) isolates should be distinguished from tuberculosis and identified at the species level for choosing an appropriate treatment plan. In this study, two molecular methods were used to differentiate NTM species, including a new designed High Resolution Melting (HR...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC microbiology 2024-06, Vol.24 (1), p.205-6, Article 205
Hauptverfasser: Khosravi, Azar Dokht, Meghdadi, Hossein, Hashemzadeh, Mohammad, Alami, Ameneh, Tabandeh, Mohammad Reza
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Non-tuberculous mycobacterial (NTM) isolates should be distinguished from tuberculosis and identified at the species level for choosing an appropriate treatment plan. In this study, two molecular methods were used to differentiate NTM species, including a new designed High Resolution Melting (HRM) and Multilocus Sequence Analysis (MLSA). Seventy-five mycobacterial isolates were evaluated by sequencing four genes ( MLSA) and a HRM assay specifically targeting atpE was designed to rapidly and accurately identify and differentiate mycobacterium species. Out of 70 NTM isolates, 66 (94.3%), 65 (92.9%), 65 (92.9%) and 64 (91.4%) isolates were identified to the species level by PCR of atpE, tuf, rpoB and dnaK genes. We could identify 100% of the isolates to the species level (14 different species) by MLSA. By using HRM assay, all NTM isolates were identified and classified into eight groups, in addition, Mycobacterium tuberculosis and Nocardia were also detected simultaneously. The MLSA technique was able to differentiate all 14 species of NTM isolates. According to the results, the HRM assay is a rapid and beneficial method for identifying NTM, M. tuberculosis (MTB), and Nocardia isolates without sequencing.
ISSN:1471-2180
1471-2180
DOI:10.1186/s12866-024-03361-x