Cooperative Localization for Multi-AUVs Based on GM-PHD Filters and Information Entropy Theory

Cooperative localization (CL) is considered a promising method for underwater localization with respect to multiple autonomous underwater vehicles (multi-AUVs). In this paper, we proposed a CL algorithm based on information entropy theory and the probability hypothesis density (PHD) filter, aiming t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2017-10, Vol.17 (10), p.2286
Hauptverfasser: Zhang, Lichuan, Wang, Tonghao, Zhang, Feihu, Xu, Demin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cooperative localization (CL) is considered a promising method for underwater localization with respect to multiple autonomous underwater vehicles (multi-AUVs). In this paper, we proposed a CL algorithm based on information entropy theory and the probability hypothesis density (PHD) filter, aiming to enhance the global localization accuracy of the follower. In the proposed framework, the follower carries lower cost navigation systems, whereas the leaders carry better ones. Meanwhile, the leaders acquire the followers' observations, including both measurements and clutter. Then, the PHD filters are utilized on the leaders and the results are communicated to the followers. The followers then perform weighted summation based on all received messages and obtain a final positioning result. Based on the information entropy theory and the PHD filter, the follower is able to acquire a precise knowledge of its position.
ISSN:1424-8220
1424-8220
DOI:10.3390/s17102286