Efficient Implementations of Four-Dimensional GLV-GLS Scalar Multiplication on 8-Bit, 16-Bit, and 32-Bit Microcontrollers
In this paper, we present the first constant-time implementations of four-dimensional Gallant–Lambert–Vanstone and Galbraith–Lin–Scott (GLV-GLS) scalar multiplication using curve Ted 127 - glv 4 on 8-bit AVR, 16-bit MSP430, and 32-bit ARM processors. In Asiacrypt 2012, Longa and Sica introduced the...
Gespeichert in:
Veröffentlicht in: | Applied sciences 2018-06, Vol.8 (6), p.900 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we present the first constant-time implementations of four-dimensional Gallant–Lambert–Vanstone and Galbraith–Lin–Scott (GLV-GLS) scalar multiplication using curve Ted 127 - glv 4 on 8-bit AVR, 16-bit MSP430, and 32-bit ARM processors. In Asiacrypt 2012, Longa and Sica introduced the four-dimensional GLV-GLS scalar multiplication, and they reported the implementation results on Intel processors. However, they did not consider efficient implementations on resource-constrained embedded devices. We have optimized the performance of scalar multiplication using curve Ted 127 - glv 4 on 8-bit AVR, 16-bit MSP430, and 32-bit ARM processors. Our implementations compute a variable-base scalar multiplication in 6,856,026, 4,158,453, and 447,836 cycles on AVR, MSP430, and ARM Cortex-M4 processors, respectively. Recently, Four Q -based scalar multiplication has provided the fastest implementation results on AVR, MSP430, and ARM Cortex-M4 processors to date. Compared to Four Q -based scalar multiplication, the proposed implementations require 4.49% more computational cost on AVR, but save 2.85% and 4.61% cycles on MSP430 and ARM, respectively. Our 16-bit and 32-bit implementation results set new speed records for variable-base scalar multiplication. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app8060900 |