Increasing Resilience of Production Systems by Integrated Design
The paper presents a framework for considering resilience as an integrated aspect in the design of manufacturing systems. The framework comprises methods for the assessment of resilience, supply chain and production planning, flexible execution and control as well as modular and skill-based methods...
Gespeichert in:
Veröffentlicht in: | Applied sciences 2021-09, Vol.11 (18), p.8457, Article 8457 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The paper presents a framework for considering resilience as an integrated aspect in the design of manufacturing systems. The framework comprises methods for the assessment of resilience, supply chain and production planning, flexible execution and control as well as modular and skill-based methods for automation systems. A basic classification of risk categories and their impacts on manufacturing environments is given so that a concept of reconfigurable and robust production systems can be derived. Based on this, main characteristics and concepts of resilience are applied to manufacturing systems. As a lever of increased resilience on business and supply chain level, options for synchronized production planning are presented in a discrete event simulation. Furthermore, a concept to increase resilience on the level of business process execution is investigated, allowing manufacturing tasks to be rescheduled during runtime using a declarative approach to amend conventional business process models. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app11188457 |