Scale‐Dependent Vertical Heat Transport Inferred From Quasi‐Synoptic Submesoscale‐Resolving Observations
Oceanic motions across meso‐, submeso‐, and turbulent scales play distinct roles in vertical heat transport (VHT) between the ocean's surface and its interior. While it is commonly understood that during summertime the enhanced stratification due to increased solar radiation typically results i...
Gespeichert in:
Veröffentlicht in: | Geophysical research letters 2024-06, Vol.51 (12), p.n/a |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Oceanic motions across meso‐, submeso‐, and turbulent scales play distinct roles in vertical heat transport (VHT) between the ocean's surface and its interior. While it is commonly understood that during summertime the enhanced stratification due to increased solar radiation typically results in an reduced upper‐ocean vertical exchange, our study reveals a significant upward VHT associated with submesoscale fronts ( |
---|---|
ISSN: | 0094-8276 1944-8007 |
DOI: | 10.1029/2024GL110190 |