Comparing the Effects of Long-term Exposure to Extremely Low-frequency Electromagnetic Fields With Different Values on Learning, Memory, Anxiety, and β-amyloid Deposition in Adult Rats
Extremely Low-Frequency Electromagnetic Fields (ELF-EMFs) have gathered significant consideration for their possible pathogenicity. However, their effects on the nervous system's functions were not fully clarified. This study aimed to assay the impact of ELF-EMFs with different intensities on m...
Gespeichert in:
Veröffentlicht in: | Basic and clinical neuroscience 2021-11, Vol.12 (6), p.849-860 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Extremely Low-Frequency Electromagnetic Fields (ELF-EMFs) have gathered significant consideration for their possible pathogenicity. However, their effects on the nervous system's functions were not fully clarified. This study aimed to assay the impact of ELF-EMFs with different intensities on memory, anxiety, antioxidant activity, β-amyloid (Aβ) deposition, and microglia population in rats.
Fifty male adult rats were randomly separated into 5 groups; 4 were exposed to a flux density of 1, 100, 500, and 2000 microtesla (μT), 50 Hz frequency for one h/day for two months, and one group as a control group. The control group was without ELF-EMF stimulation. After 8 weeks, passive avoidance and Elevated Plus Maze (EPM) tests were performed to assess memory formation and anxiety-like behavior, respectively. Total free thiol groups and the index of lipid peroxidation were evaluated. Additionally, for detection of Aβ deposition and stained microglia in the brain, anti-β-amyloid and anti-Iba1 antibodies were used.
The step-through latency in the retention test in ELF-EMF exposure groups (100500 & 2000 μT) was significantly greater than the control group (P |
---|---|
ISSN: | 2008-126X 2228-7442 2228-7442 |
DOI: | 10.32598/bcn.2021.1204.2 |