Relations in Grassmann Algebra Corresponding to Three- and Four-Dimensional Pachner Moves

New algebraic relations are presented, involving anticommuting Grassmann variables and Berezin integral, and corresponding naturally to Pachner moves in three and four dimensions. These relations have been found experimentally - using symbolic computer calculations; their essential new feature is th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, integrability and geometry, methods and applications integrability and geometry, methods and applications, 2011-12, Vol.7, p.117
1. Verfasser: Korepanov, Igor G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:New algebraic relations are presented, involving anticommuting Grassmann variables and Berezin integral, and corresponding naturally to Pachner moves in three and four dimensions. These relations have been found experimentally - using symbolic computer calculations; their essential new feature is that, although they can be treated as deformations of relations corresponding to torsions of acyclic complexes, they can no longer be explained in such terms. In the simpler case of three dimensions, we define an invariant, based on our relations, of a piecewise-linear manifold with triangulated boundary, and present example calculations confirming its nontriviality.
ISSN:1815-0659
1815-0659
DOI:10.3842/SIGMA.2011.117