Impact of Experimental Conditions on Extracellular Vesicles' Proteome: A Comparative Study

Extracellular vesicle (EV) research is a rapidly developing field, mainly due to the key role of EVs in intercellular communication and pathophysiological processes. However, the heterogeneity of EVs challenges their exploration and the establishment of gold-standard methods. Here, we aimed to revea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Life (Basel, Switzerland) Switzerland), 2023-01, Vol.13 (1), p.206
Hauptverfasser: Böröczky, Tímea, Dobra, Gabriella, Bukva, Mátyás, Gyukity-Sebestyén, Edina, Hunyadi-Gulyás, Éva, Darula, Zsuzsanna, Horváth, Péter, Buzás, Krisztina, Harmati, Mária
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Extracellular vesicle (EV) research is a rapidly developing field, mainly due to the key role of EVs in intercellular communication and pathophysiological processes. However, the heterogeneity of EVs challenges their exploration and the establishment of gold-standard methods. Here, we aimed to reveal the influence of technical changes on EV biology and the reliability of experimental data. We used B16F1 melanoma cells as a model and applied nanoparticle tracking analysis, mass spectrometry (LC-MS/MS) and pathway enrichment analysis to analyze the quantity, size distribution, proteome and function of their small EVs (sEVs) produced in sEV-depleted fetal bovine serum (FBS)-containing medium or serum-free medium. Additionally, we investigated the effects of minor technical variances on the quality of sEV preparations. We found that storage of the isolates at -80 °C has no adverse effect on LC-MS/MS analysis, and an additional washing step after differential ultracentrifugation has a minor influence on the sEV proteome. In contrast, FBS starvation affects the production and proteome of sEVs; moreover, these vesicles may have a greater impact on protein metabolism, but a smaller impact on cell adhesion and membrane raft assembly, than the control sEVs. As we demonstrated that FBS starvation has a strong influence on sEV biology, applying serum-free conditions might be considered in in vitro sEV studies.
ISSN:2075-1729
2075-1729
DOI:10.3390/life13010206