causalizeR: a text mining algorithm to identify causal relationships in scientific literature
Complex interactions among multiple abiotic and biotic drivers result in rapid changes in ecosystems worldwide. Predicting how specific interactions can cause ripple effects potentially resulting in abrupt shifts in ecosystems is of high relevance to policymakers, but difficult to quantify using dat...
Gespeichert in:
Veröffentlicht in: | PeerJ (San Francisco, CA) CA), 2021-07, Vol.9, p.e11850-e11850, Article e11850 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Complex interactions among multiple abiotic and biotic drivers result in rapid changes in ecosystems worldwide. Predicting how specific interactions can cause ripple effects potentially resulting in abrupt shifts in ecosystems is of high relevance to policymakers, but difficult to quantify using data from singular cases. We present causalizeR ( |
---|---|
ISSN: | 2167-8359 2167-8359 |
DOI: | 10.7717/peerj.11850 |