Enhanced Genetic Method for Optimizing Multiple Sequence Alignment

In the realm of bioinformatics, Multiple Sequence Alignment (MSA) is a pivotal technique used to optimize the alignment of multiple biological sequences, guided by specific scoring criteria. Existing approaches addressing the MSA challenge tend to specialize in distinct biological features, leading...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2023-11, Vol.11 (22), p.4578
Hauptverfasser: Ibrahim, Mohammed K, Yusof, Umi Kalsom, Eisa, Taiseer Abdalla Elfadil, Nasser, Maged
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the realm of bioinformatics, Multiple Sequence Alignment (MSA) is a pivotal technique used to optimize the alignment of multiple biological sequences, guided by specific scoring criteria. Existing approaches addressing the MSA challenge tend to specialize in distinct biological features, leading to variability in alignment outcomes for the same set of sequences. Consequently, this paper proposes an enhanced evolutionary-based approach that simplifies the sequence alignment problem without considering the sequences in the non-dominated solution. Our method employs a multi-objective optimization technique that uniquely excludes non-dominated solution sets, effectively mitigating computational complexities. Utilizing the Sum of Pairs and the Total Conserved Column as primary objective functions, our approach offers a novel perspective. We adopt an integer coding approach to enhance the computational efficiency, representing chromosomes with sets of integers during the alignment process. Using the SABmark and BAliBASE datasets, extensive experimentation is conducted to compare our method with existing ones. The results affirm the superior solution quality achieved by our approach compared to its predecessors. Furthermore, via the Wilcoxon signed-rank test, a statistical analysis underscores the statistical significance of our model’s improvement (p < 0.05). This comprehensive approach holds promise for advancing Multiple Sequence Alignment in bioinformatics.
ISSN:2227-7390
2227-7390
DOI:10.3390/math11224578