Spatial-fluxomics provides a subcellular-compartmentalized view of reductive glutamine metabolism in cancer cells
The inability to inspect metabolic activities within subcellular compartments has been a major barrier to our understanding of eukaryotic cell metabolism. Here, we describe a spatial-fluxomics approach for inferring metabolic fluxes in mitochondria and cytosol under physiological conditions, combini...
Gespeichert in:
Veröffentlicht in: | Nature communications 2019-03, Vol.10 (1), p.1351-1351, Article 1351 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The inability to inspect metabolic activities within subcellular compartments has been a major barrier to our understanding of eukaryotic cell metabolism. Here, we describe a spatial-fluxomics approach for inferring metabolic fluxes in mitochondria and cytosol under physiological conditions, combining isotope tracing, rapid subcellular fractionation, LC-MS-based metabolomics, computational deconvolution, and metabolic network modeling. Applied to study reductive glutamine metabolism in cancer cells, shown to mediate fatty acid biosynthesis under hypoxia and defective mitochondria, we find a previously unappreciated role of reductive IDH1 as the sole net contributor of carbons to fatty acid biosynthesis under standard normoxic conditions in HeLa cells. In murine cells with defective SDH, we find that reductive biosynthesis of citrate in mitochondria is followed by a reversed CS activity, suggesting a new route for supporting pyrimidine biosynthesis. We expect this spatial-fluxomics approach to be a highly useful tool for elucidating the role of metabolic dysfunction in human disease.
Measuring metabolic fluxes in cellular compartments is a challenge. Here, the authors introduce an approach to infer fluxes in mitochondria and cytosol, and find that IDH1 is the major producer of cytosolic citrate in HeLa cells and that in SDH- deficient cells citrate synthase functions in reverse. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-019-09352-1 |