Numerical Computation of Lightly Multi-Objective Robust Optimal Solutions by Means of Generalized Cell Mapping
In this paper, we present a novel algorithm for the computation of lightly robust optimal solutions for multi-objective optimization problems. To this end, we adapt the generalized cell mapping, originally designed for the global analysis of dynamical systems, to the current context. This is the fir...
Gespeichert in:
Veröffentlicht in: | Mathematics (Basel) 2020-11, Vol.8 (11), p.1959 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we present a novel algorithm for the computation of lightly robust optimal solutions for multi-objective optimization problems. To this end, we adapt the generalized cell mapping, originally designed for the global analysis of dynamical systems, to the current context. This is the first time that a set-based method is developed for such kinds of problems. We demonstrate the strength of the novel algorithms on several benchmark problems as well as on one feed-back control design problem where the objectives are given by the peak time, the overshoot, and the absolute tracking error for the linear control system, which has a control time delay. The numerical results indicate that the new algorithm is well-suited for the reliable treatment of low dimensional problems. |
---|---|
ISSN: | 2227-7390 2227-7390 |
DOI: | 10.3390/math8111959 |